The Shape of the Value Sets of Linear Recurrence Sequences
نویسنده
چکیده
We show that the closure of the value set of a real linear recurrence sequence is the union of a countable set and a finite collection of intervals. Conversely, any finite collection of closed intervals is the closure of the value set of some recurrence sequence.
منابع مشابه
THE ENTROPIES OF THE SEQUENCES OF FUZZY SETS AND THE APPLICATIONS OF ENTROPY TO CARDIOGRAPHY
In this paper, rstly we have introduced to entropy of sequences of fuzzy sets and given sometheorems about it. Secondly, the waves P and T which appears in electrocardiograms weretransferred to fuzzy sets, by using denition of entropy for sequences of fuzzy sets, and somenumerical values were obtained for sequences of waves P and T. Thus any person can makea medical predictions for some cardiac...
متن کاملToeplitz transforms of Fibonacci sequences
We introduce a matricial Toeplitz transform and prove that the Toeplitz transform of a second order recurrence sequence is another second order recurrence sequence. We investigate the injectivity of this transform and show how this distinguishes the Fibonacci sequence among other recurrence sequences. We then obtain new Fibonacci identities as an application of our transform.
متن کاملRelation Between RNA Sequences, Structures, and Shapes via Variation Networks
Background: RNA plays key role in many aspects of biological processes and its tertiary structure is critical for its biological function. RNA secondary structure represents various significant portions of RNA tertiary structure. Since the biological function of RNA is concluded indirectly from its primary structure, it would be important to analyze the relations between the RNA sequences and t...
متن کاملWijsman Statistical Convergence of Double Sequences of Sets
In this paper, we study the concepts of Wijsman statistical convergence, Hausdorff statistical convergence and Wijsman statistical Cauchy double sequences of sets and investigate the relationship between them.
متن کاملOn Lacunary Statistical Limit and Cluster Points of Sequences of Fuzzy Numbers
For any lacunary sequence $theta = (k_{r})$, we define the concepts of $S_{theta}-$limit point and $S_{theta}-$cluster point of a sequence of fuzzy numbers $X = (X_{k})$. We introduce the new sets $Lambda^{F}_{S_{theta}}(X)$, $Gamma^{F}_{S_{theta}}(X)$ and prove some inclusion relaions between these and the sets $Lambda^{F}_{S}(X)$, $Gamma^{F}_{S}(X)$ introduced in ~cite{Ayt:Slpsfn} by Aytar [...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009